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Directional solidification into static stability 
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Consider the directional solidification of a binary alloy rejecting a heavy solute as it 
solidifies upward. If the solidification front is planar, the fluid melt ahead of the front 
is stably stratified and convection is not expected. In this paper we analyse the linear 
stability of planar solidification asymptotically in the limit of large solutal Rayleigh 
number, R. Three distinct linear modes are found which correspond to internal 
waves, buoyancy edge waves, or morphological modes. Of these three modes, only 
the morphological modes are subject to an instability. We find that for large Rayleigh 
number this instability first occurs at long wavelengths with wavenumbers that scale 
on R-l/14. The scalings derived from the linear analysis are used to construct a 
nonlinear theory for the morphological instability in the large Rayleigh number limit. 
Similarity solutions are found which describe steadily convecting, non-planar growth 
reminiscent of an observed phenomenon known as steepling. 

1. Introduction 
The flow of a liquid melt can significantly alter the stability of solidification fronts 

and the subsequent development of microstructure (Glicksman, Coriell & McFadden 
1986; Davis 1990). This is important since flow is present during most of the 
solidification that occurs on Earth: as lakes of magma cool, as casts of molten 
aluminium freeze into ingots, or as crystals of doped semiconductor are pulled 
from the melt. The principal source of the flow is a buoyant convection driven by 
rejected impurities whose distributions depend sensitively on the morphology of the 
solidification front. Although solidification from a convecting melt is the rule rather 
than the exception, theoretical work on the coupled problem is largely undeveloped. 

The control and elimination of convection is important to crystal growers producing 
uniform single crystals of material for electronic-device applications. It is believed 
that convection is primarily responsible for dopant striations that degrade the quality 
of a crystal. One way of removing the convection is to orient a planar solidification 
front that rejects a heavy solute so that growth is in the upward direction. The liquid 
melt in this case is stably stratified with the denser liquid lying close to the interface. 
As long as the front remains planar the fluid is statically stable to convection. 

However, the solidification front is deformable and it may not remain flat. The direc- 
tional solidification experiments of Burden, Hebditch & Hunt (1973) on metal alloys 
and later those of Verhoeven, Mason & Trivedi (1986) clearly show that convection 
may occur during upward growth and that this convection is accompanied by non- 
planar solidification fronts. The non-planar fronts always bend backwards and are 
observed to disappear as the solutal Rayleigh number is decreased, either by increasing 
the pulling velocity I/ or by decreasing the equilibrium solute concentration C,. The 
scale of the curvature in the front is the same as the container size, hundreds of times 
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larger than the typical microstructural scale. These macroscopically curved fronts ap- 
pear in experiments with solutal Rayleigh numbers that are typically larger than lo6. 

Burden at al. (1973) qualitatively interpret this ‘steepling’ effect as an instability 
of planar growth. They suggest that when planar interfaces curve slightly backward, 
horizontal solute gradients produce a convective flow that washes heavy solute away 
from peaks in the interface. The added solute along the sloping sides of the front re- 
duces the equilibrium temperature and tends to melt the front further back, increasing 
its curvature. Although this mechanism is plausible, the argument does not predict 
the scale of the deflection. Moreover, it does not explain why planar solidification is 
ever observed ! 

Coriell & McFadden (1989) have interpreted steepling as an aspect of the mor- 
phological instability (for a review of the morphological instability see Coriell & 
McFadden 1993). They consider the linear stability of upward planar directional 
solidification for a mixture with heavy solute but include the effects of both thermal 
and solutal buoyancy. When the solutal Rayleigh number R is set to zero, they find 
that the morphological instability is dramatically altered by the presence of thermal 
buoyancy. If the thermal Rayleigh number is ‘switched on’, i.e. if the acceleration 
due to gravity is changed from Og to lg, critical solute concentrations may decrease 
by three orders of magnitude while the critical wavenumber may decrease by more 
than two. Horizontal temperature gradients create a convection that transports solute 
toward the interface in a way which is cooperative with the mechanism producing 
a morphological instability and the length scales of the instability move toward the 
length scales of thermal convection. 

Coriell & McFadden (1989) determine that for parameters relevant to experiments, 
the length scale of the instability becomes comparable to the size of the experimental 
container suggesting that the observed steepling may be related to a morphological 
instability. In a sense, the macroscopic deflection of the interface results from a 
microscopic instability (the morphological instability) modified by convection. 

They also find that incorporating solute buoyancy is stabilizing. As the solutal 
Rayleigh number is increased from zero, the critical wavenumber remains small while 
the critical concentration increases. If the Coriell-McFadden picture is an accurate 
description of steepling, it is essentially governed by thermal convection and is not 
due to the mechanism of solutal buoyancy as Burden et al. (1973) suggest. 

In this article we reconsider the upward directional solidification of a dilute binary 
alloy rejecting a heavy solute. We include the effects of solute buoyancy but exclude 
thermal buoyancy. We begin by considering the linear stability of planar directional 
solidification in the limit of large solutal Rayleigh number. We discover three 
distinct classes of linear modes. Two of these classes are essentially convective 
modes with small interface deflection. They represent either internal waves which 
propagate throughout the bulk fluid or buoyancy edge waves that remain trapped 
in a thin layer near the interface. All of these modes are stable. The last mode has 
significant interface deformation and represents the Mullins-Sekerka mode (Mullins 
& Sekerka 1964) for large solutal Rayleigh numbers. This mode is unstable when 
the equilibrium concentration C, is sufficiently large. Linear theory reveals that 
the critical wavenumber scales on R-l/14 for large R so that the morphological 
instability occurs at long wavelengths even in the absence of thermal buoyancy. We 
find that solute buoyancy preferentially destabilizes small-wavenumber disturbances 
and produces the trend toward long waves. 

Long-wavelength instabilities naturally lead to nonlinear evolution equations gov- 
erning transition. There are now several recognized long-wave regimes for directional 
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FIGURE 1. Schematic of a planar directional solidification front pulled at a constant velocity Y 
through a linear temperature field, P. The melt is static and the rejected solute establishes an 
exponential profile, C. Because the solute is heavy and the acceleration due to gravity g acts 
downward, the quiescent melt is statically stable. 

solidification with and without melt flow (Riley & Davis 1990). The existence of 
a long-wave evolution equation allows for important progress to be made on the 
nonlinear description of the morphological instability. For example, it is significantly 
easier to derive weakly nonlinear theories from an evolution equation than from the 
original model. Questions of pattern selection are also much easier to address. Also, 
problems that may not be numerically tractable can be investigated in the long-wave 
regime through numerical simulations of the evolution equation. 

We use the long-wave regime for upward directional solidification at large solutal 
Rayleigh numbers to develop an asymptotic theory which can be further reduced 
to an evolution equation for the shape of the interface. In the last section of this 
article we employ the long-wave theory to find a set of similarity solutions for steady, 
non-planar solidification fronts which may have some relevance to the observations 
of steepling. 

2. Equations of motion 
In this section we outline our model of buoyant directional solidification and refer to 

earlier papers (Coriell et al. 1980; Hurle, Jakeman & Wheeler 1982) for a description 
of more complete models. The directional solidification of a binary mixture, pulled at 
a velocity V k  through a temperature field fixed to the laboratory frame of reference, 
is sketched in figure 1. At a temperature close to the melting temperature of a pure 
material, TM, the binary mixture is continuously solidified at a rate V. The equilibrium 
temperature of the planar solid-liquid interface is To = T M  +mCo where m is the slope 
of the liquidus line and CO is the concentration of solute at the interface. We adopt the 
frozen-temperature approximation (Langer 1980) and assume that the temperature 
field 

As material freezes, solute is typically rejected at the solidification front. When the 
equilibrium concentration C ,  is small, the ratio of solute concentrations across the 
solid-liquid interface is a constant k. Although it is essentially immobile once frozen 
into the alloy, the solute diffuses freely in the liquid phase with diffusivity 9. If the 
solidification front is planar and if the liquid melt remains motionless, the rejected 
solute establishes a diffusive boundary layer of thickness 2?/ V. 

We assume that the solute is heavier than the surrounding solvent and that the 
density of the mixture is related to the solute concentration through a linearized 
equation of state, 

(2.1 ) 
Here pa is the equilibrium density of the mixture, f l  > 0 is the coefficient of solute 
expansion, and we have assumed that the liquid density is independent of temperature. 

is linear with constant gradient G, independent of the solidification. 

(P - P a J / P a  = B(C - CW). 
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When the directional solidification cell is oriented so that growth is in the upward 
direction, the density stratification produced by the layer of rejected solute is statically 
stable. 

The two-dimensional Boussinesq equations governing the dimensionless stream 
function lp(x, z, t )  and the dimensionless solute concentration c(x,z, t )  in a frame of 
reference moving with the solidification front at a constant velocity V may be written 
as follows: 

(2.2) 1 s-l [(a/& - a/az)v2w + J(V, v2w)] = v4w - Rac/ax, 
( a / &  - a/az)c + J(qJ,c) = v%, 

where J(u,u)  is a shorthand notation for det[a(u, u ) / a ( x ,  z) ] .  Here the stream function 
which measures velocity in the laboratory frame has been scaled on the diffusivity 
9 while c represents the difference between the dimensional concentration and C ,  
scaled by the miscibility gap AC = (1  - k)C,/k.  Lengths have been scaled by 9 / V  
and time has been scaled by .9/V2. The non-dimensional groupings that appear 
involve the liquid viscosity v ;  they are the Schmidt number S = v / 9  and the solutal 
Rayleigh number 

At the solid-liquid interface z = h(x, t) ,  with outward-pointing unit normal A, normal 
velocity u,, and curvature K, we apply a condition of no slip, 

lp = vlp .A = 0, (2.4) 

A + [k + (1 - ~ ) c ] u ,  = 0, (2.5) 

C =  l - i k - ' h - r K .  (2.6) 

a condition of solute conservation, 

VC 
and the Gibbs-Thomson condition of thermodynamic equilibrium, 

The remaining non-dimensional parameters r and M measure temperature changes 
along the solid-liquid interface. The first parameter, r = r V / m A C 9 ,  is proportional 
to r, the amount that the equilibrium temperature of a spherical seed with unit radius 
is reduced by surface energy. F is typically on the order of 10-SK cm. The second 
parameter, M = mAC V / 9 G ,  is a morphological number inversely proportional to 
the gradient of the external temperature field. 

A basic-state solution to the governing system represents planar directional solid- 
ification into a quiescent melt. The solute concentration in this case is exponential 
and the stream function is identically zero, 

, g = o ,  h = o .  (2.7) = e-i 

In the next section we examine whether this planar convectionless growth is linearly 
stable. 

3. Linear theory: R >> 1 
The evolution of small variations from steady, planar growth with no convection 

is governed by the linearized disturbance equations obtained by linearizing the equa- 
tions of motion (2.2),(2.4)-(2.6) about the basic-state solution (2.7). If we assume 
that these variations can be decomposed into a superposition of normal modes, 
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[C(z), Y (z), H]eiqX+uf, then the evolution of the disturbance is prescribed by a linear 
growth rate o that satisfies the characteristic equation. If differentiation with respect 
to the vertical coordinate z is denoted by D, the linearized disturbance equations 
result in the following eigenvalue problem for the normal modes: 

[(D2 - q2)2 + S-'(D2 - q2)(D - o)]Y - iqRC = 0, 
iqe-'Y + (D2 + D - o - q2)C = 0, (3.1) 1 

1 
on 0 < z < 00 subject to the boundary conditions at z = 0, 

( 3 4  
Y = D Y  =0, 

DC + [l - k + (0 + k)(l - M-' - q2r)-']C = 0. 

We also require that disturbances vanish far from the interface. The deflection in the 
interface H is connected to the value of C at z = 0 through a linearized version of 
the boundary condition (2.6) as follows: 

Solutions to this system have been computed numerically using the software package 
SUPORT (Scott & Watts 1977) to solve the two-point boundary-value problem with 
a secant method to locate the eigenvalues (T. 

Our goal in this section is to classify the various normal modes with respect to 
their dominant physical characteristics. This is most easily achieved by examining the 
asymptotic behaviour of the modes in a limit of interest. Since the solutal Rayleigh 
numbers R in typical experiments for binary alloys solidified at rates on the order 
of microns per second are commonly between lo6 and lo', we choose to examine 
the asymptotic behaviour of the solutions to (3.1)-(3.2) in the large Rayleigh number 
limit. 

We assume that the quantities q, k, r , M, and S are all O( 1) parameters as R + 00 

and seek every possible distinguished limit. These are found by rescaling 6, Y ,  and 
derivatives D on the powers of R that are selected through a balance of appropriate 
terms in (3.1). There are only three such distinguished limits. 

3.1. Internal waves 
An inviscid fluid with a stable density stratification supports internal-wave motion 
(Turner 1973). The mechanism of this motion is easily understood: when a parcel 
of fluid is moved a small distance Az upward from an initial position zo it feels a 
downward restoring force due to its negative buoyancy equal to g(dp0ldz)A.z.  The 
ensuing motion oscillates at the Brunt-Vaisala frequency N = (-g(dpo/dz)/po)'/2. 

The linearized equation of state and the basic-state solute profile lead to a stable 
density stratification in the liquid ahead of the front. The modes associated with 
the first distinguished limit correspond to internal waves propagating throughout the 
solute boundary layer. The first distinguished limit requires o = 0(R1I2), Y = 0(R'I2), 
and D = 0(1)  as R -, 00 so that these modes have a vertical length scale of the 
same size as the basic-state profile and a frequency of O(R1/2). The connection to 
internal waves is clear since the Brunt-Vaisala frequency made dimensionless on our 
time scale of 9 / V 2  is found to be N = S1/2R1/2e-z/2. The frequencies of the first 
distinguished modes are the frequencies of internal-wave motion. 

The leading-order behaviour of the mode as R + 00 is given by 

C ly Co + . . . , y N R1l2 yo + . . a ,  (T - R' /2~o  + * . * (3.4) 
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where 
S-'ao(D2 - q2)Yo + iqC0 = 0, iqe-zYo - a& = 0, (3.5) 

on 0 < z < co. These equations are the same as those which govern inviscid 
internal-wave motion in an isothermal atmosphere and they have the exact solutions 

where A and B are arbitrary constants and J ,  and Y, are the Bessel functions of 
order v. The boundary condition that YO tends to zero as z tends toward infinity 
requires that B = 0. The remaining boundary conditions are that CO, YO, and DYo 
are all zero at the crystal interface. Unfortunately solutions of the form (3.6) cannot 
be chosen so that these three conditions are simultaneously met. We must choose 
to impose either the inviscid boundary conditions, Co(0) = Yo(0) = 0, or the viscous 
no-slip boundary condition DYo(0) = 0. Both conditions cannot be satisfied. 

This apparent overabundance of boundary conditions is caused by a non-uniformity 
in the asymptotic expansion (3.4) which breaks down as z approaches zero. The 
manner in which this expansion breaks down is understood - it is well-known that 
high-frequency oscillatory flows in real fluids develop viscous Stokes layers near 
boundaries. If o is the frequency of the outer flow, the scale for the thickness of the 
Stokes layer is ( V / O ) ' / ~ .  In our case the frequency of the outer flow is proportional to 
R112 so that the nearly inviscid internal waves governed by (3.5) blend into a viscous 
Stokes layer of thickness R-1/4 at the solid-liquid interface. 

The appropriate boundary conditions which apply to equation (3.5) can be deter- 
mined via the method of matched asymptotic expansions (Kevorkian & Cole 1981). 
The structure of the solution near the interface is found by first rescaling vertical 
lengths on R-1/4, introducing the inner variable 5 = R1/4z, and then developing both 
Y and C in an inner expansion, 

that must be matched to the outer expansion (3.4) at the edge of the Stokes layer. 
After rescaling the problem (3.1)-(3.2) using D. to represent differentiation with 
respect to (. and after introducing the expansion (3.7) we find at leading order that 
we must evaluate the system 

(3.8) D:'@o - S-'aoD?@o = 0, iq@o - a& + Dlto = 0, 

on 0 < [ < co subject to the boundary conditions at ( = 0, 

'?o = D. $0 = 0, t o  = 0, (3.9) 

and the matching condition, 

lim { Y  ( ~ - ' / ~ q 5 * )  - @ ( q [ * ) )  = 0, (3.10) 

where 4'' is fixed while limR+, v = 00 and limR,, R-'l4q = 0. It is found that (i) the 
only leading-order inner solution which satisfies these constraints is t o ( ( )  = @o(() = 0 
and (ii) that the matching condition requires the leading-order outer solution to satisfy 
the inviscid boundary conditions Co(0) = Yo(0) = 0. 

If we apply the inviscid conditions to (3.6) we find that the leading-order dispersion 
relation is selected to be 

at' = 2iq~' /~/y, , ,  (3.11) 

R+CU 
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where y n  is real and satisfies &(y,J = 0. For each wavenumber q there is a discrete 
set of modes indexed by n, the number of cells in the vertical direction. 

The dispersion relation (3.1 1)  does not indicate whether the internal waves grow 
or decay in time. To determine the stability of these modes the next correction in 
(T must be obtained by including higher-order terms in our expansion. The presence 
of a Stokes layer requires that the outer expansion proceed in powers of R-'I4 as 
follows : 

' } (3.12) 

To calculate the correction in the dispersion relation at next order we must solve the 
system 

C * Co + R-ll4C1 + .  . . , rc, R1l2Yo + R-1/4yJ1 +.  . 
O(n) R]/~(T!) + R ~ / ~ ( T Y )  + . . . . 

(3.13) 

subject to boundary conditions. One of the boundary conditions at this order is that 
Y l  and C1 tend to zero as z tends toward infinity. The boundary condition at z = 0 
requires a further examination of the Stokes layer. 

At next orderin the inner expansion for the Stokes layer we must again solve the 
system (3.8) for C1 and $1 subject to the same boundary conditions (3.9) and the same 
matching condition (3.10). At this order there are non-trivial solutions exhibiting the 
oscillatory decay in ( that is characteristic of a Stokes layer. The matching condition 
now requires that the next-order term in the outer expansion satisfy the eflectiue 
boundary conditions, 

Yl(0) = -(S/(T~')'/~DYO(O), Cl(0) = -(S/O~))'/*DCO(O), (3.14) 

1 S-~(T!)(D~ - q2)yl + iqCl = -s-~(T(")(D~ 1 - q2)yo, 
iqe-i Y1 - ot)cl = (TY 'cO,  

where Re ( S / ( T ~ ) ) ' / ~  > 0. 
The linear equation (3.13) with the condition of decay at infinity and the boundary 

conditions (3.14) is inhomogeneous. Because the homogeneous version of this problem 
has the non-zero solution (YO, CO) a solution to the inhomogeneous problem exists 
only if a solvability condition is satisfied. This condition, which can be determined in 
a variety of ways, requires (T?) to satisfy 

(3.15) 

where the function F: = Jt e-'[J~(yne-Z~2)]2dz/[J~,(yne-'/2)12 > 0. 
The correction to the dispersion relation reveals that internal waves are always 

damped. The time scale of decay is O(R-lI4) and for typical directional solidification 
experiments it is approximately equal to 0.1 s. At first glance it may not appear 
surprising that the stably stratified liquid is stable but it must be remembered that 
solidification is occurring and that the solid-liquid interface is deformable. None of the 
parameters k ,  r ,  or M appear in the decay rate (3.15) which implies that solidification 
does not influence the stability of internal waves when Rayleigh numbers are large. 
Although there is some deformation of the interface associated with these modes, the 
deformation is slight. It follows directly from the relation (3.3) and the expansion 
(3.12) that the interface deformation satisfies H = O(R-'l4). Although these internal 
waves are stable, they may be driven to instability by the presence of externally 
imposed vibration (Brattkus 1992). The effects of external vibration have also been 
studied in the statically stable case by Wheeler et al. (1991). 
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3.2. Buoyancy edge waves 
Another class of modes is associated with the second possible distinguished limit 
requiring a = O(R113), Y = O(R'/') ,  and D = 0 ( R ' I 6 )  as R + co. We label this second 
class of modes 'buoyancy edge waves' since they are convective modes confined to a 
layer near the interface of thickness O(R-'16). 

These modes are essentially trapped internal waves. As the index n which measures 
the number of vertical cells in an internal-wave mode increases, the thickness 6, of 
the primary cell closest to the interface decreases. The stream function (3.5) can 
be used to show that 6, - 2/n.  At the same time, because the frequency of the 
internal wave decreases as n increases, the thickness of the Stokes layer 6, increases 
as 6, - n'/2R-1/4. The scalings in the second distinguished limit are precisely those 
which correspond to values of n where the Stokes layer and the primary cell overlap, 
6, - 6,. In this sense the second class of modes may be viewed as an internal wave 
trapped at the interface by viscosity. 

For the buoyancy edge waves we have 

} (3.16) 
C - Co + R-'I6C1 +.  . ., Y - R1I3YO + R116Y1 + 1 .  -, - R1I3oo + R'I6a1 + * .  . , 

as R + co where the leading-order system, 

D:'Yo - S-'aoD?Yo - iqC0 = 0, iqY0 + DICo - a& = 0, (3.17) 

on 0 d < c co is subject to the boundary conditions at [ = 0, 

Yo = D* Yo = 0, Co = 0. (3.18) 

The vertical coordinate has been rescaled here to be [ = R'16z. Although it is a 
simple enough matter to extract from this system a characteristic equation for 00, 
the characteristic equation is awkward to analyse. We adopt a different tack and 
determine that all of these modes are stable by proving indirectly that Reao < 0. To 
show this we notice that the equation 

[Y,'D?(D; - S-'ao)Yo - C,'(Dt - ao)Co] d( = 2iq Re Y,'Cod[, (3.19) 1" 
follows directly from (3.17) where superscript asterisks denote complex conjugation. 
If we integrate the left-hand side of this expression by parts we find that 

It is clear from (3.20) that Re 00 < 0 and that the inequality is strict since if Re a0 = 0 
it is necessary that both YO and CO be identically zero. 

This second class of modes is always stable and the buoyancy edge waves decay on 
a time scale which is asymptotically faster than the scale of decay for internal waves. It 
follows from (3.3) that the interface deflection for these modes satisfies H = 0(R-lI6) ,  
larger than the deflection found for the internal waves but still asymptotically small. 

3.3. The Mullins-Sekerka mode 
In the absence of convection a directional solidification front is subject to morpho- 
logical instabilities. The original linear stability analysis of Mullins & Sekerka (1964) 
demonstrated that planar growth is unstable whenever the parameter M exceeds a 
critical value M,. They also predicted the critical wavenumber qc of the first unstable 
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mode. This instability is present in the system (3.1H3.2) when both the solutal 
Rayleigh number R and the stream function Y are set to zero. 

The morphological instability persists when R > 0 although the horizontal con- 
centration variations associated with the instability now produce a baroclinically 
driven convection (Coriell et al. 1980; Hurle et al. 1982). The horizontal variation in 
concentration near the interface is given by (3.3), C(0)eiqx = (1 - M-I + Tq2)Heiq“. 
From this expression it is clear that the perturbed concentration is largest at crests 
in the interface and that in these regions the fluid mixture is densest. This variation 
in density produces a torque on the fluid and causes fluid to be convected from the 
crests toward depressions in the interface. Because the added solute that is trans- 
ported with the fluid tends to reduce the temperature of the interface in accordance 
with thermodynamic equilibrium, the result of this flow is that it tends to melt back 
or deepen interfacial depressions. As a result, buoyancy effectively destabilizes the 
interface, reducing the value of M ,  as R increases. 

The extent to which convection destabilizes the morphological instability depends 
on the wavenumber q. The trend of this dependence is suggested by examining the 
unstable mode when R = 0. If R and Y are set to zero the eigenfunction of system 
(3.1)-(3.2) is eiqx+at-f [1+(1+qu+q2))1/2]z. As q increases, this disturbance is confined to 
a progressively thinner layer near the crystal interface. When R is small but non- 
zero the convection driven by this concentration distribution is also confined to a 
progressively thinner layer at the interface as q increases. Since it seems reasonable 
to conjecture that convection localized at the interface is less effective in transporting 
solute along the interface, we expect the destabilizing effects of convection to be 
reduced as q increases. The most significant destabilization due to solute buoyancy 
should occur for long-wavelength disturbances. Because of this trend one expects the 
critical wavenumber qc to be shifted toward smaller values as R increases. 

The last distinguished limit as R + 00 is a Mullins-Sekerka mode which, unlike 
the previous two modes, is accompanied by a significant deformation of the interface. 
The mode is characterized by the scalings r~ = O(R1/6), Y = O(R’/3) ,  D = 0(R1I6) .  
After the vertical coordinate [ = R116z is introduced, the asymptotic expansion of 
this third class of modes proceeds in powers of RP1I6, 

’ } (3.21) 
C - Co+R-1/6Cl +”., Y - R 1 / 3 Y 0 + R 1 / 6 Y 1  + . - a  

r~ * R 1 / 6 ~ o  + 01 + . . . , 
as R + co. The equations governing the leading-order terms become 

D1Yo - iqC0 = 0, iqY0 + D?Co = 0, (3.22) 

and they are subject to the boundary conditions at [ = 0, 

!Po=D.Yo=O, (1-M-’  -Tq2)D.Co+~oCo=0, (3.23) 

and a condition of decay at infinity. 
The eigenfunctions of this system are exponential functions of the variable 41/3(: 

yo = ( 1  + a2)ea11qt1/’Z +(a,  - a2)e-~q~1’3C - ( 1  + al)ea21q11’3C, 
(3.24) 

c0 = -ilqll/3[(1 + a1)ea~IqI”3C + (a1 - a2)e-tqt1”C - ( 1  + a2)ea21q11”i I, 
where aj  = e2niJ/3 and the characteristic equation for (TO is simply 

= ;(I - M - 1 -  rq2)1411/3. (3.25) 

The unstable eigenfunctions are presented graphically in figure 2. Growth rates 
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X 

FIGURE 2. The interface shape, isopycnals, and streamlines for perturbations described by the 
eigenfunction (3.24). The interface at z = 0, with its depression in the centre of the figure, is 
enlarged and displayed in the lower box. The closed curves are streamlines and the curves which 
intersect the interface are lines of constant solute concentration. Dashed curves correspond to 
negative values: the liquid is depleted of solute and is rising above depressions in the interface. 

are positive and the interface is morphologically unstable when M > 1 and the 
critical wavenumber at this order in the approximation is zero. As we expected, the 
morphological instability is a long-wavelength instability for large Rayleigh numbers. 
Even though the surface-energy parameter is non-zero, buoyancy has destabilized the 
morphological instability to the level of the constitutional undercooling criterion. 

When q = 0 in the original linear problem (3.1)-(3.2), convection decouples from the 
diffusion of solute and it has been noted previously that without non-equilibrium ef- 
fects the Mullins-Sekerka mode is stable to pulsatile motion (Merchant & Davis 1990). 
The conclusion that q = 0 is the critical wavenumber must be incorrect. The source 
of the problem here is that the expansion (3.21) is not uniform for all values of q. It 
can be shown that although the expansion is valid for q2R >> 1, it breaks down as 
q tends to zero. A higher-order approximation for the growth rate cr is required to 
find the correct critical wavenumber. The correction term crl is found by proceeding 
to next order where we must solve the system 

(3.26) 1 DtYI - iqC1 = -S-'D?(D, - ao)Yo, 
iqY1 + D?CI = iqrY0 - (D. - cro)Co, 

subject to the boundary conditions at ( = 0, 

} (3.27) 
Yl =D.Yl =O, 

(1 - M-' - Tq2)D.C1 + 0oC1 = [(l - k)(M-' + T q 2 )  - 61 - 1]Co, 

and decay at infinity. The system (3.26)-(3.27) is inhomogeneous and has a non-zero 
homogeneous solution corresponding to the leading-order eigenfunctions YO and CO. 
There is a solution to the system only if an appropriate compatibility condition is 
satisfied. The condition in this case requires 

6 1  = -k + ( k  - &)(l - M-' - f q 2 )  + &(17 - S-')(l - M-' - f 4 )  '. (3.28) 

The asymptotic approximation for the growth rate cr, valid to O(R-1/6), is 

6 - ;( 1 - M-' - fq2)(q2R)1/6  - k + (k  - &)(l- M-I - f q2)  

+&(17 - S-')(l - M-' - rq2)2, (3.29) 
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C, (% wt) G (K c m - I )  V (pm s-I) R 0. Qn 

2.5 125.0 5.0 8.5 x 10" 2.461 2.544 
1 .o 20.0 2.0 5.3 x los 3.432 3.492 
0.5 5.0 1 .o 2.1 x lo6 4.384 4.432 

TABLE 1. A comparison of the growth rate un numerically computed from (3.1)-(3.2) us. the 
asymptotic value u, predicted by equation (3.29). Three experimental conditions are listed. Using 
the material parameters appropriate for a Sn-Pb alloy these correspond to fixing the parameters 
q = 1,k = 0.12,s = 120, M = 5.6, r = 7.3 x The asymptotic result approaches the numerical 
result as the solutal Rayleigh number R increases. Growth rates increase with Rayleigh number, i.e. 
buoyancy destabilizes the morphological instability. 

O( R -In )  

FIGURE 3. A schematic of the marginal stability curve for morphological modes at large Rayleigh 
numbers. In the hatched region near q = 0 the two-termed asymptotic approximation given by 
equation (3.29) is not valid. All wavenumbers to the right of the dashed line located near q = r-l'z 
are absolutely stable. 

as R + co. This result is confirmed in table 1 through a comparison between 
the growth rates given by the expression above and those computed numerically 
from the full system (3.1)-(3.2). Rayleigh numbers must be relatively large before 
the comparison becomes accurate. We can use (3.29) to determine a more refined 
estimate of the critical wavenumber qc for the morphological instability. 

The marginal stability curve divides the (M,q)-plane into regions of stability and 
instability. The critical pair (M,,q,)  is the lowest point along this curve. When the 
two principal terms are retained in (3.29) near the marginal stability curve, the growth 
rate is approximately described by 

G - $(l - M-' - fq2) (q2R) ' l6  - k as R + 00, (3.30) 

which leads to the marginal stability relation !( 1 - M-' - f q2)(q2R)1/6 - k .  If this 
result is used to compute the critical data we find that 

(3.31) 

The two-term approximation to the growth rate predicts a critical wavenumber that 
satisfies the restriction q2R >> 1 and therefore lies within the range where (3.29) is 
asymptotically valid. A schematic of the marginal stability curve appears in figure 3. 

M ,  - 1 + $(3fk6)'/7R-'/7 , qc - (3r /k)-3/7R-1/14.  
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4. Morphological instabilities; nonlinear theory 
The linear theory developed in the previous section can be used to determine 

the dominant scales at transition. For large values of the Rayleigh number, linear 
theory predicts that a transition from planar to non-planar interfaces occurs when 
M is slightly above unity and that the horizontal scale of the transition is set by the 
wavelength of the unstable mode, 1, = 2n/q, = O(R1/14).  Since the eigenfunctions 
depend on q ' / 3 [ ,  the appropriate vertical length scale at transition is qF1/3R-1/6 = 
O(R-' /7) .  The expression for the growth rate (3.29) near critical reveals that the 
relevant time scale for the dynamics of the transition is O( 1) as R -+ 00. 

We build these scalings derived from linear theory directly into the nonlinear 
problem (2.2),(2.4)-(2.6) by defining the following variables: 

X = R-'/l4x, Z = R1I72, T = t, p = ( 1  - M-')R' /7 ,  (4.1) 

and expanding the solution to the nonlinear problem in an asymptotic series as 
R -+ 00. The information needed to develop this asymptotic series is not completely 
contained in the linear theory. For example, linear theory predicts the ratio of the 
leading-order scales for the linearized concentration and the stream function but it 
does not indicate the size of the concentration deviations as compared to the basic- 
state exponential profile. Similarly, linear theory does not predict the size of the 
deflection in the interface. The magnitude of the first correction to the basic state 
and the size of the interface deflection are chosen in our expansion so that nonlinear 
terms are promoted to leading-order in the asymptotic theory. This criterion requires 
the following expansions: 

c = e  
(4.2) 

Since the scale on the interface h is the same as the vertical scale, the interface in the 
new coordinates is located at 2 = H where H is not necessarily small. 

Inserting these scalings into the governing equations (2.2),(2.4)-(2.6) and collecting 
the leading-order terms in R-'/14 we find the following system: 

1 + R-2/7Co(X,Z,  T )  + * * .  , -R- l i lZ  

w = R1/14Yo(X,Z,  T )  + . * * ,  

h = R - ' / 7 H ( X ,  T )  = R-'I7HO(X, T )  + * * . . 

'yozzzz - cox + HOXCOZ = 0, Yox + cozz - H o x ~ o z  = 0, (4.3) 

which is subject to the boundary conditions applied at 2 = 0, 

(4.4) 

and a condition that both CO and YO approach zero far from the interface. The reduced 
system (4.3H4.4) is quasi-steady (time derivatives appear only in the boundary 
conditions) and a coordinate translation, Z H 2 + H ,  has been introduced so that 
the location of the interface is fixed at Z = 0. 

The problem described above is a free-boundary problem for the leading-order 
position of the interface Ho. The common development of a long-wave theory 
leads to one-dimensional fields at leading order and an evolution equation for the 
interface at higher orders (Riley & Davis 1990). Here the leading-order theory is two- 
dimensional and does not immediately lead to an evolution equation for the interface 
Ho. Although the reduced system is a significant simplification over the original 
nonlinear problem (2.2),(2.4)-(2.6), the further reduction to an evolution equation for 
the interface is important. Numerical solutions are more easily obtained from an 

1 Yo = Y O Z  = 0, coz + kHo + HOT = 0, 
+ r H o x x ,  co = pH0 - 
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evolution equation and simulations on a three-dimensional version of the reduced 
system currently require it. 

We can reduce the system to a single evolution equation by first obtaining the 
matrix Green’s function G(p1p‘) that satisfies the following 2 x 2 system of equations 

(4.5) 

where L-HoxM is shorthand for the operator appearing in equation (4.3) (for example 
I , (”)  represents d4/dZ4). Here p = (X,Z) and S ( p  - p’) is a delta function with its 
source at p’. The Green’s function decays as Z tends to infinity and G satisfies the 
conditions 

along the boundary po = (X,O). Once this Green’s function is determined it can be 
used to show that HO must satisfy the following evolution equation: 

(L  - HOXWG(PlP’) = S(P - P’Y 

G(”’(polp’) = G(’2’(~ol~’) = 0, G Z ( P O ~ P ’ )  = 0, (4.6) 

where the kernel K is related to the Green’s function through K(X,X’) = 2G(”)(poJp’). 
The kernel depends implicitly on HO ; the evolution equation is nonlocal and nonlinear. 

Although it is difficult to determine a closed-form expression for the Green’s 
function, a Neumann series for G(p1p’) can be constructed by iterating the equation 
(4.5). In this way the Green’s function may be represented by the series 

G(PlP’) = Go(PlP’) + GdPlP’) + G2(PIP’) + . . . 9  (4.8) 

where 

Gi+l(plP’) = S_ml Go(PIP”)Hox“i(p”lp’)dp’’, i = 0,1,2,--* (4.9) 

and Go(p1p’) satisfies LGo(p(p’)  = S ( p  - p’) /  with the boundary conditions (4.6). We 
have solved for the first term in the Neumann series expansion of the Green’s function 
and determined that 

Ko(X,X’) = 2Gr’(poJp’) = r ( 2 / 3 ) ( X  - X’l-2’3/z. (4.10) 

where r(.) is not the surface energy here but the Gamma function. This first term is 
sufficient to analyse the linear stability of a planar solution HO = 0 directly from the 
evolution equation; the resulting linear theory reclaims the dispersion relation (3.30). 
When the interfacial slopes Hox are bounded the Neumann series (4.8) is expected to 
converge rapidly; the evolution equation (4.7) should serve as the starting point for 
an efficient numerical simulation of the interface. 

5. Non-planar solidification 
The long-wave theory outlined above represents an asymptotic reduction of the 

governing system (2.2),(2.4)-(2.6) for large Rayleigh numbers which significantly 
simplifies the discussion of morphological instabilities. For example, the Landau 
equation describing the nonlinear development of the amplitude for the most unstable 
mode near transition can be determined analytically from (4.3),(4.4) while numerics 
are required to determine the same equation from the original system. 

In this section we use the long-wave theory to search for steady, non-planar solutions 
to the directional solidification problem. The task is simplified by seeking self-similar 
solutions to (4.3), (4.4) which exist only if two additional provisions are adopted. First, 
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similarity solutions exist only if the surface-energy parameter r is zero. Although r 
is typically quite small, the limit r + 0 in equation (4.6) is a singular limit which 
requires attention. We assume here that r is identically zero. A second provision, 
sufficient for self-similarity, is that the physical constant p is proportional to the 
local temperature (or equivalently to the vertical coordinate z ) .  Because we have 
treated all of the parameters that appear in the definition of p as constant, this 
second allowance is seemingly of dubious physical consequence except in the case 
where the proportionality constant is zero, that is where M = 1. For the moment we 
assume p is proportional to z. The proportionality constant f i  will be viewed as a 
non-physical continuation parameter that allows us to calculate non-planar solutions 
at a physically meaningful value of ji = 0. 

We introduce the similarity variable q = Z ( X I - 1 / 3  and define 

Yo = X Y  ( q ) ,  Co = lX12’3C(q), Ho = lX11/3H, p = IX11/3fi, (5.1) 

(5.2) 

so that (4.3) becomes a system of ordinary differential equations for Y and C ,  

Y”” + i ( H  + q)C’ - f C  = 0, C” - f ( H  + v)Y’ + Y = 0, 

on 0 < q < 03, subject to the boundary conditions at q = 0, 

Y = Y ‘ = O ,  C ’ + k H = O ,  C = f i H - i H 2 ,  (5.3) 

and a condition of decay as q + 03. Primes denote differentiation with respect to 
the similarity variable q.  The system above is an eigenvalue problem for the interface 
‘shape’, H. 

A numerical integration of the differential equations (5.2) reveals a strong tendency 
for solutions to develop algebraic growth in q.  When zero conditions are imposed 
at the right end of a large but finite interval, a spurious boundary layer develops. 
This layer is inconsistent with the conditions of decay we require. Fortunately, the 
interior growth can be eliminated by observing that there are two exact solutions to 
the differential equations: C = 0, Y = ( H  + q ) )  and C = (H + q)*, Y = -2. The first 
exact solution corresponds to a far-field shear flow with horizontal velocities scaling 
on Z 2 .  The second exact solution corresponds to a constant vertical flow. Since we 
are interested in the case of no far-field flow, neither of these solutions is allowed. 
We can use these solutions to reduce the order of the system and to eliminate the 
difficulty with spurious boundary layers. These solutions can be eliminated through 
the substitution 

3(H + q)2 L q ( H  + X ) - ~ $ ( X ) ~ X ,  Odq<l ,  
Y ‘ = {  oci 1<q<O3, (5.4) 

-3(H + q)2 1 (H + ~) -~4(x )dx ,  
q 

where 4 must satisfy the differential equation, 

( H  + ~ ) ~ 4 ’ ” ’  - 2(H + q)&” + 2+” + i ( H  + ~ ) ~ 4  = 0, 

with the boundary conditions at q = 0, 

An auxiliary condition, 

guarantees that Y (0) = 0. 
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1 2  3 4 5 6 7 8 9 10 

- 4 t  

FIGURE 4. Computed values for the eigenvalue H of the system (5.5-5.7) as a function of the 
continuation parameter ,ii when k = 0.12. The similarity solutions branch from the planar solution, 
H = 0, subcritically to negative values of ,ii. The branch turns around and solutions move into the 
supercritical range. There are two solutions when ,ii = 0: the planar front and a non-planar front 
with H = -3.16 

When H > 0 SUPORT has no difficulty in solving the boundary-value problem 
(5S35.6). No solutions satisfying the auxiliary condition 

When H < 0 the differential equation has a regular singular point at y~ = - H .  The 
form of the substitution (5.4) was chosen so that all solutions to (5 .5 )  are analytic at 
the singular point; this is revealed through a local analysis of 4 near q = -23. Even 
though a local analysis of 4 near the singular point reveals that all solutions are 
analytic there, some care must be taken when numerically integrating through this 
point. To integrate the equation when H < 0 we first make H complex to move the 
singularity off the integration path. If I m H  is fixed and sufficiently large, the system 
can be integrated without difficulty. Non-zero values of R e H  < 0 are found such 
that all of the conditions of the problem (5345 .7 )  are satisfied. The value of I m H  
is then decreased until R e H  converges. 

The results are shown in figure 4. There is a branch of similarity solutions which 
emerges from the planar solution H = 0 and extends slightly into the subcritical range 
p < 0 before turning around and continuing on for positive values of f i .  The fact 
that similarity solutions exist only for H < 0 means that the self-similar solid-liquid 
interface always bends back toward lower temperatures. The interface has an upward 
pointing cusp at the origin that separates counter-rotating convection cells. When the 
self-similar stream function is used to determine the vertical velocity near the front 
we find that w - 3q24(0 ) /2H.  The computed values for 4(0) are always found to be 
positive when H < 0 indicating that fluid is swept from the cusp downward along 
the interface. 

The meaning of the similarity solutions with f i  # 0 is not clear since they require 
physical constants to vary along the interface. We consider p to be a non-physical 
continuation parameter that allows us to compute the non-planar similarity solution 
in the case when f i  = 0, a case which is equivalent to fixing the morphological number 
M to unity everywhere. 

$(x)dx = 0 are found. 
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6. Summary 
The first is that 

thermal buoyancy is not necessary to produce long-wavelength instabilities during 
upward directional solidification. Because of the preferential destabilization of small 
wavenumbers, strong solute buoyancy alone is sufficient to increase the wavelength 
of critical disturbances. 

The second item is that the asymptotic theory developed for large solutal Rayleigh 
numbers exhibits solutions that represent steady, non-planar solidification fronts. We 
have found a similarity solution at A4 = 1 which bends backward toward lower 
temperatures. A cusp in the interface separates two counter-rotating convection cells 
that sweep solute in the melt from the cusp downward along the front. We would like 
to make an analogy between this non-planar solidification and the observations of 
steepling in directional solidification experiments. Steepling is observed when a planar 
array of either dendritic or cellular microstructure suddenly bends backward toward 
colder temperatures. We have replaced this planar array of microstructure by a flat, 
sharp interface. The shape of our self-similar non-planar front is not identical to those 
seen experimentally: for example, (i) a cusp has never been observed on a steepled 
interface and (ii) the curvature of our front has the opposite sign of those observed. 
However, the non-planar, macroscopically curved solution captures the essence of 
the qualitative description of steepling due to Burden et al. (1973). Although this 
‘steepled’ interface does not require thermal buoyancy as Coriell & McFadden (1989) 
suggested, it occurs precisely at the point when the planar front first becomes 
morphologically unstable, i.e. when M = 1. This is consisitent with the suggestion of 
Coriell & McFadden (1989) that steepling is connected to a morphological instability 
of planar fronts. 

At the moment we do not know whether the similarity solution is stable or whether 
it persists for non-zero capillarity. Since the curvature of the cusp singularity in the 
interface of the similarity solution is bounded, the exclusion of surface energy is not 
expected to significantly modify the solution. 

Long-wavelength instabilities in directional solidification are sensitive to our ap- 
proximation of a linear and imperturbable temperature field (Coriell & McFadden 
1993). The long-wave theory developed in this paper is relevant to materials whose 
solid and liquid phases have equivalent thermal properties with a thermal diffusivity 
that is much larger than the solute diffusivity. The Stefan number VL, /KG (L ,  is the 
latent heat of fusion and K is the thermal conductivity) must also be small. Since the 
materials which actually satisfy these criteria are few, the long-wave theory should be 
viewed as a qualitative description of a unique morphological instability. 

There are two principal items of importance in our paper. 
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